Part Number Hot Search : 
MMP7062 BZX55 00WSH 10001 5A31A CMHZ4702 IDT74A IRF5210S
Product Description
Full Text Search
 

To Download MAX402309 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-2758; Rev 1; 11/09
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
General Description
The MAX4023-MAX4026 family of voltage feedback multiplexer-amplifiers combine low-glitch switching and excellent video specifications with fixed or settable gain. The MAX4024/MAX4026 are triple and quad 2:1 multiplexers, respectively, with amplifiers that have a fixed gain of +2. The MAX4023/MAX4025 are triple and quad 2:1 multiplexers, respectively, with adjustable gain amplifiers optimized for unity-gain stability. All devices have 25ns channel switching time and low 10mVP-P switching transients, making them ideal for high-speed video-switching applications. These devices operate from a single +4.5V to +11V supply or from dual supplies of 2.25V to 5.5V, and feature an input common-mode voltage range that extends to the negative supply rail. A low-power disable mode places the output in a high-impedance state. The MAX4023/MAX4025 have -3dB bandwidths of 260MHz and up to 330V/s slew rates with a settable gain to equalize long cable runs. The MAX4024/ MAX4026, with 200MHz -3dB bandwidths and 363V/s slew rates, have a fixed gain of +2 for driving short back-terminated cables. The MAX4023/MAX4025 internal amplifiers maintain an open-loop output impedance of only 18 over the full output voltage range, and minimize the gain error and bandwidth changes under loads typical of most rail-to-rail amplifiers. These devices are ideal for broadcast video applications with differential gain and phase errors of 0.07% and 0.07, respectively. o Single +5V or Dual 5V Operation o 260MHz -3dB Bandwidth (MAX4023/MAX4025) o 200MHz -3dB Bandwidth (MAX4024/MAX4026) o 363V/s Slew Rate (MAX4024/MAX4026) o 25ns Channel Switching Time o Ultra-Low 20mVP-P Switching Transient o 0.012%/0.05 Differential Gain/Phase Error o Input Common-Mode Range Includes Negative Rail (MAX4023/MAX4025) o Low-Power Disable Mode o Available in Space-Saving 14-Pin TSSOP and 16-Pin QSOP Packages
Features
MAX4023-MAX4026
Ordering Information
PART MAX4023EEE MAX4023ESE MAX4024EUD MAX4024ESD MAX4025EUP MAX4025EWP MAX4026EUP MAX4026EWP TEMP RANGE -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C PIN-PACKAGE 16 QSOP 16 Narrow SO 14 TSSOP 14 Narrow SO 20 TSSOP 20 Wide SO 20 TSSOP 20 Wide SO
Applications
Set-Top Boxes In-Car Navigation/Entertainment Servers Security Systems Video Projectors Notebook Computers Broadcast Video Video Crosspoint Switching
Selector Guide and Pin Configurations appear at end of data sheet.
Typical Operating Circuit
VIDEO R SOURCE G 1 B
MAX4024
x2
R
VIDEO R SOURCE G 2 B
TRIPLE 2:1 MUX
x2
G
DISPLAY
x2
B
SOURCE SELECT
EN
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ..................................................12V IN_A, IN_B, FB_ ...............................(VEE - 0.3V) to (VCC + 0.3V) REF, EN, A/B ....................................(VEE - 0.3V) to (VCC + 0.3V) Current Into IN_A, IN_B, FB_ ............................................20mA Short-Circuit Duration (OUT_ to GND or VEE) ............Continuous Short-Circuit Duration (OUT_ to VCC)..............................(Note 1) Continuous Power Dissipation (TA = +70C) 14-Pin TSSOP (derate 9.1mW/C above +70C) .........727mW 14-Pin Narrow SO (derate 8.3mW/C above +70C) ...667mW Note 1: Do not short OUT_ to VCC.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
16-Pin QSOP (derate 8.3mW/C above +70C)...........667mW 16-Pin Narrow SO (derate 8.7mW/C above +70C) ...696mW 20-Pin TSSOP (derate 10.9mW/C above +70C) .......879mW 20-Pin Wide SO (derate 10mW/C above +70C)........800mW Operating Temperature Range ...........................-40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C
DC ELECTRICAL CHARACTERISTICS--Dual Supply
(VCC = +5V, VEE = -5V, RL = , EN = +5V, VCM = REF = OUT_ = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2)
PARAMETER Operating Supply Voltage Range Quiescent Supply Current Disable Supply Current Input Voltage Range Input Offset Voltage Input Offset Voltage Matching Input Offset Voltage Drift Input Bias Current Input Offset Current Differential Input Resistance Input Resistance VIN VOS VOS TCVOS IB IOS RIND RIN MAX4023/MAX4025 MAX4023/MAX4025, -10mV < VIND < +10mV MAX4023/MAX4025, common mode MAX4024/MAX4026, single ended MAX4023/MAX4025 MAX4024/MAX4026 Open loop Closed loop, AVCL = +1 SYMBOL VS IS CONDITIONS Guaranteed by PSRR OUT = 0V EN = 0V MAX4023/MAX4024 MAX4025/MAX4026 MAX4023/MAX4024 MAX4025/MAX4026 VEE VEE + 2.9 0.5 1 1 1.5 15 23 4 0.1 50 4.5 4.5 18 0.025 0.15 14 2 MIN 2.25 25 34 3.6 4.4 TYP MAX 5.5 36 48 6 6 VCC - 2.8 VCC - 2.8 15 18 UNITS V mA mA V mV mV VC A A k M
MAX4023/MAX4025, inferred from CMRR MAX4024/MAX4026, inferred from AVCL MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026
Output Resistance
ROUT
2
_______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
DC ELECTRICAL CHARACTERISTICS--Dual Supply (continued)
(VCC = +5V, VEE = -5V, RL = , EN = +5V, VCM = REF = OUT_ = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2)
PARAMETER Disable Output Resistance Power-Supply Rejection Ratio Common-Mode Rejection Ratio Open-Loop Gain Voltage Gain Gain Matching SYMBOL ROUT PSRR CMRR AVOL AVCL AVCL CONDITIONS MAX4023/MAX4025, EN = 0V MAX4024/MAX4026, EN = 0V 2.25V < VS < 5.5V MAX4023/MAX4025, VEE < VCM < VCC - 2.8V MAX4023/MAX4025, RL = 150, -4.3V < VOUT < +4.3V MAX4024/MAX4026, RL = 150, VEE + 2.9V < VIN < VCC - 2.8V MAX4024/MAX4026 RL = 150 MAX4023/MAX4025 RL = 75 Output Voltage Swing VOUT RL = 150 MAX4024/MAX4026 RL = 75 LOGIC INPUT CHARACTERISTICS Logic-Low Threshold Logic-High Threshold Logic-Low Input Current Logic-High Input Current VIL VIH IIL IIH EN, A/B EN, A/B EN, A/B; EN or A/B = 0V EN, A/B; EN or A/B = VCC VCC - 3.3 5 2 10 8 VCC - 3.85 V V A A VCC - 0.7 VCC - 1.2 VCC - 0.7 50 50 70 5.5 MIN TYP 75 1 64 68 85 6.0 1 VCC - 0.5 VEE + 0.5 VEE + 0.7 VCC - 0.8 VEE + 0.8 VEE + 1.2 VCC - 0.5 VEE + 0.3 VEE + 0.7 VCC - 1.2 VCC - 0.8 VEE + 0.5 VEE + 1.2 V 6.5 MAX UNITS k dB dB dB dB %
MAX4023-MAX4026
_______________________________________________________________________________________
3
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
DC ELECTRICAL CHARACTERISTICS--Single Supply
(VCC = +5V, VEE = 0V, RL = , EN = +5V, VCM = REF = OUT = 0.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2)
PARAMETER Operating Supply Voltage Range Quiescent Supply Current Disable Supply Current Input Voltage Range Input Offset Voltage Input Offset Voltage Matching Input Offset Voltage Drift Input Bias Current Input Offset Current Differential Input Resistance Input Resistance VIN VOS VOS TCVOS IB IOS RIND RIN MAX4023/MAX4025 MAX4023/MAX4025, -10mV < VIND < +10mV MAX4023/MAX4025, common mode MAX4024/MAX4026, single ended MAX4023/MAX4025 MAX4024/MAX4026 Disable Output Resistance Power-Supply Rejection Ratio Common-Mode Rejection Ratio Open-Loop Gain Voltage Gain Gain Matching ROUT PSRR CMRR AVOL AVCL AVCL MAX4023/MAX4025, EN = 0V MAX4024/MAX4026, EN = 0V 4.5V < VS < 11V MAX4023/MAX4025, VEE < VCM < VCC - 2.8V MAX4023/MAX4025, RL = 150, 0.3V < VOUT < 4.3V MAX4024/MAX4026, RL = 150, VEE + 0.28V < VIN < VCC - 2.8V MAX4024/MAX4026 50 50 70 5.5 Open loop Closed loop, AVCL = +1 SYMBOL VS IS CONDITIONS Guaranteed by PSRR MAX4023/MAX4024, OUT = 0V MAX4025/MAX4026, OUT = 0V MAX4023/MAX4024, EN = 0V MAX4025/MAX4026, EN = 0V MAX4023/MAX4025, inferred from CMRR MAX4024/MAX4026, inferred from AVCL MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 VEE VEE + 0.28 1 3 1 1.5 9 13 4.5 0.1 50 4.5 4.5 18 0.025 0.15 75 1 64 91 85 6.0 1 6.5 k dB dB dB dB % 14 2 MIN 4.5 19 31 3.3 3.9 TYP MAX 11 32 43 6 6 VCC - 2.8 VCC - 2.8 18 20 UNITS V mA mA V mV mV VC A A k M
Output Resistance
ROUT
4
_______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
DC ELECTRICAL CHARACTERISTICS--Single Supply (continued)
(VCC = +5V, VEE = 0V, RL = , EN = +5V, VCM = REF = OUT = 0.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2)
PARAMETER SYMBOL CONDITIONS RL = 150 to GND MAX4023/MAX4025 RL = 75 to GND Output Voltage Swing VOUT RL = 150 to GND MAX4024/MAX4026 RL = 75 to GND LOGIC INPUT CHARACTERISTICS Logic-Low Threshold Logic-High Threshold Logic-Low Input Current Logic-High Input VIL VIH IIL IIH EN, A/B EN, A/B EN, A/B; EN or A/B = 0V EN, A/B; EN or A/B = VCC VCC - 3.3 5 2 10 8 VCC - 3.85 V V A A MIN VCC - 1.1 VCC - 1.1 VCC - 1.1 VCC - 1.1 TYP VCC - 0.5 VEE + 0.03 VCC - 0.8 VEE + 0.03 VCC - 0.5 VEE + 0.03 VCC - 0.8 VEE + 0.04 VEE + 0.08 VEE + 0.09 VEE + 0.175 V VEE + 0.175 MAX UNITS
MAX4023-MAX4026
_______________________________________________________________________________________
5
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
AC ELECTRICAL CHARACTERISTICS--Dual Supply
(VCC = +5V, VEE = -5V, RIN = 75 to GND, RL = 150 to GND, EN = +5V, VCM = 0V, REF = 0V, AVCL = +1 (MAX4023/MAX4025). Typical values are at TA = +25C, unless otherwise noted.)
PARAMETER Small-Signal -3dB Bandwidth Large-Signal -3dB Bandwidth Small-Signal 0.1dB Gain-Flatness Bandwidth Large-Signal 0.1dB Gain-Flatness Bandwidth Slew Rate Settling Time to 0.1% Power-Supply Rejection Ratio Output Impedance Differential Gain Error DG SYMBOL BWSS BWLS CONDITIONS VOUT = 100mVP-P VOUT = 2VP-P MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MIN TYP 260 200 85 110 30 32 22 24 300 363 32 32 60 1.5 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 0.012 0.015 0.05 0.077 1.6 1.8 90 86 -61 25 25 60 0.45 20 20 dB dB ns Degrees MAX UNITS MHz MHz MHz MHz V/s ns dB %
BW0.1dBSS VOUT = 100mVP-P BW0.1dBLS VOUT = 2VP-P SR tS PSRR VOUT = 2VP-P VOUT = 2V step f = 100kHz f = 10MHz NTSC, PAL, AVCL = +2
Differential Phase Error
DP
NTSC, PAL, AVCL = +2 f = 3.58MHz or 4.43MHz, AVCL = +2 VOUT = 2VP-P, 10MHz BW, AVCL = +2 f = 10MHz MAX4023/MAX4025 MAX4024/MAX4026 VIN = 0.5V VIN = 0.5V MAX4023/MAX4025 MAX4024/MAX4026
Group Delay
D/dT
Peak Signal to RMS Noise Crosstalk SWITCHING CHARACTERISTICS Channel Switching Time Enable Time Disable Time Switching Transient
SNR
tSW tON tOFF
ns ns s mVP-P
6
_______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
AC ELECTRICAL CHARACTERISTICS--Single Supply
(VCC = +5V, VEE = 0V, RIN = 75 to VCM, RL = 150 to GND, EN = +5V, VCM = 0.5V, REF = VCM, AVCL = +1 (MAX4023/MAX4025). Typical values are at TA = +25C, unless otherwise noted.)
PARAMETER Small-Signal -3dB Bandwidth Large-Signal -3dB Bandwidth Small-Signal 0.1dB Gain-Flatness Bandwidth Large-Signal 0.1dB Gain-Flatness Bandwidth Slew Rate Settling Time to 0.1% Power-Supply Rejection Ratio Output Impedance Differential Gain Error DG SYMBOL BWSS BWLS CONDITIONS VOUT = 100mVP-P VOUT = 2VP-P MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MIN TYP 260 200 83 110 40 44 22 25 300 363 32 32 60 1.5 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 MAX4023/MAX4025 MAX4024/MAX4026 0.016 0.02 0.054 0.085 1.6 1.9 90 86 -61 25 25 90 0.45 10 10 dB dB ns Degrees MAX UNITS MHz MHz MHz MHz V/s ns dB %
MAX4023-MAX4026
BW0.1dBSS VOUT = 100mVP-P BW0.1dBLS VOUT = 2VP-P SR tS PSRR VOUT = 2VP-P VOUT = 2V step f = 100kHz f = 10MHz NTSC, PAL, AVCL = +2
Differential Phase Error
DP
NTSC, PAL, AVCL = +2 f = 3.58MHz or 4.43MHz, AVCL = +2 VOUT = 2VP-P, 10MHz BW, AVCL = +2 f = 10MHz MAX4023/MAX4025 MAX4024/MAX4026 VIN = 0.5V VIN = 0.5V MAX4023/MAX4025 MAX4024/MAX4026
Group Delay
D/dT
Peak Signal to RMS Noise Crosstalk SWITCHING CHARACTERISTICS Channel Switching Time Enable Time Disable Time Switching Transient
SNR
tSW tON tOFF
ns ns s mVP-P
Note 2: All devices are 100% production tested at TA = +25C. Specifications over temperature are guaranteed by design.
_______________________________________________________________________________________
7
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
Typical Operating Characteristics--5V Dual Supply
(VCC = +5V, VEE = -5V, VCM = REF = 0V, EN = +5V, RIN = 75 to GND, RL = 150 to GND, AVCL = +1V/V (MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25C, unless otherwise noted.)
MAX4023/MAX4025 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY
MAX4023/25 toc01
MAX4023/MAX4025 SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY
MAX4023/25 toc02
MAX4023/MAX4025 LARGE-SIGNAL BANDWIDTH vs. FREQUENCY
4 3 2 GAIN (dB) 1 0 -1 -2 -3 -4 -5
MAX4023/25 toc03
5 4 3 2 GAIN (dB)
0.5 0.4 0.3 0.2 GAIN (dB) 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5
5
1 0 -1 -2 -3 -4 -5 0.1 1 10 FREQUENCY (MHz) 100 1000
0.1
1
10 FREQUENCY (MHz)
100
1000
0.1
1
10 FREQUENCY (MHz)
100
1000
MAX4023/MAX4025 LARGE-SIGNAL GAIN FLATNESS vs. FREQUENCY
MAX4023/25 toc04
MAX4024/MAX4026 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY
MAX4023/25 toc05
MAX4024/MAX4026 SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY
0.4 0.3 NORMALIZED GAIN (dB) 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5
MAX4023/25 toc06
0.5 0.4 0.3 0.2 GAIN (dB) 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 0.1 1 10 FREQUENCY (MHz) 100
5 4 3 NORMALIZED GAIN (dB) 2 1 0 -1 -2 -3 -4 -5
0.5
1000
0.1
1
10 FREQUENCY (MHz)
100
1000
0.1
1
10 FREQUENCY (MHz)
100
1000
MAX4024/MAX4026 LARGE-SIGNAL BANDWIDTH vs. FREQUENCY
MAX4023/25 toc07
MAX4024/MAX4026 LARGE-SIGNAL GAIN FLATNESS vs. FREQUENCY
MAX4023/25 toc08
MAX4023/MAX4025 DIFFERENTIAL GAIN AND PHASE
0.3 0.2 0.1 0 -0.1 -0.2 -0.3 1st 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 1st 2nd 3rd 4th 5th 6th 2nd 3rd 4th 5th 6th DIFFERENTIAL GAIN (%)
MAX4023/25 toc09
5 4 3 NORMALIZED GAIN (dB) 2 1 0 -1 -2 -3 -4 -5 0.1 1 10 FREQUENCY (MHz) 100
0.5 0.4 0.3 NORMALIZED GAIN (dB) 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5
1000
0.1
1
10 FREQUENCY (MHz)
100
1000
8
_______________________________________________________________________________________
DIFFERENTIAL PHASE ()
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
Typical Operating Characteristics--5V Dual Supply (continued)
(VCC = +5V, VEE = -5V, VCM = REF = 0V, EN = +5V, RIN = 75 to GND, RL = 150 to GND, AVCL = +1V/V (MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25C, unless otherwise noted.) MAX4023/MAX4025 POWER-SUPPLY REJECTION RATIO MAX4024/MAX4026 COMMON-MODE REJECTION RATIO vs. FREQUENCY DIFFERENTIAL GAIN AND PHASE vs. FREQUENCY
0.3 0.2 0.1 0 -0.1 -0.2 -0.3 1st 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 1st 2nd 3rd 4th 5th 6th 2nd 3rd 4th 5th 6th
MAX4023/25 toc10 MAX4023/25 toc11
MAX4023-MAX4026
DIFFERENTIAL GAIN (%)
-20 -40 PSRR (dB) -60 -80 -100 -120 0.01 0.1 1 FREQUENCY (MHz) 10
-20
CMRR (dB)
-40
-60
DIFFERENTIAL PHASE ()
-80
-100 100 0.01 0.1 1 10 100 1000 FREQUENCY (MHz)
OFF-ISOLATION vs. FREQUENCY
MAX4023/25 toc13
ALL-HOSTILE CROSSTALK vs. FREQUENCY
MAX4023/25 toc14
OUTPUT IMPEDANCE vs. FREQUENCY
MAX4023/25 toc15
0 -20 OFF-ISOLATION (dB) -40 -60 -80 -100 -120 1 10 100
0 -20 CROSSTALK (dB)
100
OUTPUT IMPEDANCE ()
10
-40
-60
1
-80
-100 1000 1 10 100 1000 FREQUENCY (MHz) FREQUENCY (MHz)
0.1 1 10 100 1000 FREQUENCY (MHz)
INPUT VOLTAGE-NOISE DENSITY vs. FREQUENCY
MAX4023/25 toc16
MAX4023/MAX4025 LARGE-SIGNAL TRANSIENT RESPONSE
MAX4023/25 toc17
MAX4023/MAX4025 SMALL-SIGNAL TRANSIENT RESPONSE
MAX4023/25 toc18
1000 VOLTAGE-NOISE DENSITY (nV/Hz)
INPUT 1V/div
INPUT 50mV/div
100
OUTPUT 1V/div 10 0.01 0.1 1 10 100 1000 20ns/div
OUTPUT 50mV/div
20ns/div
FREQUENCY (kHz)
_______________________________________________________________________________________
9
MAX4023/25 toc12
0
0
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
Typical Operating Characteristics--5V Dual Supply (continued)
(VCC = +5V, VEE = -5V, VCM = REF = 0V, EN = +5V, RIN = 75 to GND, RL = 150 to GND, AVCL = +1V/V (MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25C, unless otherwise noted.)
MAX4024/MAX4026 LARGE-SIGNAL TRANSIENT RESPONSE
MAX4023/25 toc19
MAX4024/MAX4026 SMALL-SIGNAL TRANSIENT RESPONSE
MAX4023/25 toc20
CHANNEL SWITCHING TRANSIENT
VA/B 5V/div
MAX4023/25 toc21
INPUT 500mV/div
INPUT 25mV/div
OUTPUT 1V/div
OUTPUT 50mV/div
VOUT 20mV/div
20ns/div
20ns/div
20ns/div
ENABLE RESPONSE TIME
MAX4023/25 toc22
MAX4023/MAX4025 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY vs. CL
MAX4023/25 toc23
OPTIMAL ISOLATION RESISTOR vs. CAPACITIVE LOAD
MAX4023 RL = 150 40
MAX4023/25 toc24
5 4 3 2 GAIN (dB) 1 0 -1 -2 -3 -4 -5 CL = 5pF CL = 0pF CL = 15pF CL = 10pF
50 OPTIMAL ISOLATION RESISTOR ()
VEN 5V/div
30
20
VOUT 500mV/div
10
0 1.0 10 100 1000 0 50 100 150 200 250 FREQUENCY (MHz) CAPACITIVE LOAD (pF)
20ns/div
10
______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
Typical Operating Characteristics--+5V Single Supply
(V CC = +5V, V EE = 0V, V CM = 0.5V, V REF = V CM , EN = +5V, R IN = 75 to V CM , R L = 150 to GND, A VCL = +1V/V (MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25C, unless otherwise noted.)
MAX4023/MAX4025 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY
MAX4023/25 toc25
MAX4023-MAX4026
MAX4023/MAX4025 SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY
MAX4023/25 toc26
MAX4023/MAX4025 LARGE-SIGNAL BANDWIDTH vs. FREQUENCY
4 3 2 GAIN (dB) 1 0 -1 -2 -3 -4 -5
MAX4023/25 toc27
5 4 3 NORMALIZED GAIN (dB) 2 1 0 -1 -2 -3 -4 -5 0.1 1 10 FREQUENCY (MHz) 100
0.5 0.4 0.3 0.2 GAIN (dB) 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5
5
1000
0.1
1
10 FREQUENCY (MHz)
100
1000
0.1
1
10 FREQUENCY (MHz)
100
1000
MAX4023/MAX4025 LARGE-SIGNAL GAIN FLATNESS vs. FREQUENCY
MAX4023/25 toc28
MAX4024/MAX4026 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY
MAX4023/25 toc29
MAX4024/MAX4026 SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY
0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 0.1 1 10 FREQUENCY (MHz) 100
MAX4023/25 toc30
0.5 0.4 0.3 0.2 GAIN (dB) 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 0.1 1 10 FREQUENCY (MHz) 100
5 4 3 NORMALIZED GAIN (dB) 2 1 0 -1 -2 -3 -4 -5
1000
0.1
1
10 FREQUENCY (MHz)
100
1000
NORMALIZED GAIN (dB)
1000
MAX4024/MAX4026 LARGE-SIGNAL BANDWIDTH vs. FREQUENCY
MAX4023/25 toc31
MAX4024/MAX4026 LARGE-SIGNAL GAIN FLATNESS vs. FREQUENCY
0.4 0.3 NORMALIZED GAIN (dB) 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 0.5
MAX4023/25 toc32
5 4 3 NORMALIZED GAIN (dB) 2 1 0 -1 -2 -3 -4 -5 0.1 1 10 FREQUENCY (MHz) 100
0.5
1000
0.1
1
10 FREQUENCY (MHz)
100
1000
______________________________________________________________________________________
11
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
Typical Operating Characteristics--+5V Single Supply (continued)
(V CC = +5V, V EE = 0V, V CM = 0.5V, V REF = V CM , EN = +5V, R IN = 75 to V CM , R L = 150 to GND, A VCL = +1V/V (MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25C, unless otherwise noted.)
MAX4023/MAX4025 DIFFERENTIAL GAIN AND PHASE
0.3 0.2 0.1 0 -0.1 -0.2 -0.3 1st 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 1st 2nd 3rd 4th 5th 6th 2nd 3rd 4th 5th 6th 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 1st 2nd 3rd 4th 5th 6th 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 1st 2nd 3rd 4th 5th 6th
MAX4023/25 toc33
MAX4024/MAX4026 DIFFERENTIAL GAIN AND PHASE
DIFFERENTIAL GAIN (%)
MAX4023/25 toc34
DIFFERENTIAL PHASE ()
DIFFERENTIAL GAIN (%)
DIFFERENTIAL PHASE ()
Pin Description
PIN MAX4023 SO/QSOP 1 2 3 MAX4024 SO/TSSOP 1 2 3 MAX4025 SO/TSSOP 1 2 3 MAX4026 SO/TSSOP 1 2 3 NAME FUNCTION
IN1A IN2A IN3A
Amplifier Input 1A Amplifier Input 2A Amplifier Input 3A Negative Power-Supply Voltage. Bypass VEE to GND with a 0.1F capacitor. Connect VEE to GND for single-supply operation. Channel Select Input. Pull A/B high to select channel A. Drive A/B low to select channel B. Amplifier Input 1B Amplifier Input 2B Amplifier Input 3B Amplifier Feedback Input for Amplifier 3 Amplifier Output 3 Amplifier Output 2 Amplifier Feedback Input for Amplifier 2 Enable Input. Pull EN high for normal operation. Drive EN low to disable all outputs.
4
4
5
5, 6
VEE
5 6 7 8 9 10 11 12 13
13 5 6 7 -- 9 10 -- 11
6 7 8 9 14 13 18 17 15
17 7 8 9 -- 13 18 -- 14
A/B IN1B IN2B IN3B FB3 OUT3 OUT2 FB2 EN
12
______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
Pin Description (continued)
PIN MAX4023 SO/QSOP 14 15 16 -- -- -- -- -- MAX4024 SO/TSSOP 12 14 -- 8 -- -- -- -- MAX4025 SO/TSSOP 16 19 20 -- 4 10 11 12 MAX4026 SO/TSSOP 15, 16 19 -- 11, 20 4 10 -- 12 NAME FUNCTION
MAX4023-MAX4026
VCC OUT1 FB1 REF IN4A IN4B FB4 OUT4
Positive Power-Supply Voltage. Bypass VCC to GND with a 0.1F capacitor. Amplifier Output 1 Amplifier Feedback Input for Amplifier 1 Reference Pin for Internal Gain Resistor Network Amplifier Input 4A Amplifier Input 4B Amplifier Feedback Input for Amplifier 4 Amplifier Output 4
Functional Diagrams
A/B VCC EN MUX1 IN1B OUT1 A/B VCC EN MUX1 IN1B OUT1
IN1A
IN1A
TO A/B TO EN MUX2 IN2B
FB1 TO A/B TO REF IN2A OUT2 MUX2 IN2B OUT2 TO EN
IN2A
FB2 TO A/B TO EN MUX3 IN3B OUT3 TO A/B TO REF IN3A MUX3 IN3B OUT3 TO EN
IN3A
FB3
MAX4023
MAX4024
REF VEE VEE
______________________________________________________________________________________
13
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
Detailed Description
The MAX4024/MAX4026 combine three and four 2:1 multiplexers, respectively, with a fixed gain of 2 amplifier. The MAX4023/MAX4025 combine three and four 2:1 multiplexers, respectively, with an adjustable gain output amplifier optimized for a closed-loop gain of +1 or greater. These devices operate from a single-supply voltage of +4.5V to +11V or from dual supplies of 2.25V to 5.5V. The outputs may be placed in a highimpedance state and the supply current minimized by forcing the EN pin low. The input multiplexers feature short 25ns channel-switching times and small 10mVP-P switching transients. These devices feature voltagefeedback output amplifiers that achieve up to 363V/s slew rates and up to 220MHz -3dB bandwidths. They also feature excellent differential gain/phase performance. The MAX4023-MAX4026 feature an A/B pin, which is an input pin for selecting either channel A or B. Drive A/B high to select channel A or drive A/B low to select channel B. Channel A is automatically selected if A/B is left unconnected. For MAX4023/MAX4025 application circuits operating with a closed-loop gain of +1 or greater, consider the external-feedback network impedance of all devices used in the mux application when calculating the total load on the output amplifier of the active device. The MAX4024/MAX4026 have a fixed gain of +2 that is internally set with two 500 thin-film resistors. The impedance of the internal feedback resistors must be taken into account when operating multiple MAX4024/ MAX4026s in large multiplexer applications. For normal operation, drive EN high. Note that the MAX4023-MAX4026 have internal pullup circuitry on EN, so if left unconnected, it is automatically pulled up to VCC.
Layout and Power-Supply Bypassing
The MAX4023-MAX4026 have high bandwidths and consequently require careful board layout, including the possible use of constant-impedance microstrip or stripline techniques. To realize the full AC performance of these high-speed amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have at least two layers: a signal and power layer on one side, and a large, low-impedance ground plane on the other side. The ground plane should be as free of voids as possible, with one exception: The feedback (FB) should have as low a capacitance to ground as possible. Whether or not a constant-impedance board is used, it is best to observe the following guidelines when designing the board: 1) Do not use wire-wrapped boards or breadboards. 2) Do not use IC sockets; they increase parasitic capacitance and inductance. 3) Keep signal lines as short and straight as possible. Do not make 90 turns; round all corners. 4) Observe high-frequency bypassing techniques to maintain the amplifier's accuracy and stability. 5) Use surface-mount components. They generally have shorter bodies and lower parasitic reactance, yielding better high-frequency performance than through-hole components. The bypass capacitors should include a 0.1F ceramic surface-mount capacitor between each supply pin and the ground plane, located as close to the package as possible. Optionally, place a 10F tantalum capacitor at the power-supply's point of entry to the PC board to ensure the integrity of incoming supplies. The powersupply traces should lead directly from the tantalum capacitor to the VCC and VEE pins. To minimize para-
Applications Information
Feedback and Gain Resistor Selection (MAX4023/MAX4025)
Select the MAX4023/MAX4025 gain-setting feedback RF and RG resistors to fit your application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros, and can decrease bandwidth or cause oscillations. Stray capacitance at the FB pin produces peaking in the frequency-response curve. Keep the capacitance at FB as low as possible by using surface-mount resistors and by avoiding the use of a ground plane beneath or beside these resistors and the FB pin. Some capacitance is unavoidable. If necessary, its effects can be neutralized by adjusting RF. Use 1% resistors to maintain gain accuracy.
Low-Power Shutdown Mode
All parts feature a low-power shutdown mode that is activated by driving the EN input low. Placing the amplifier in shutdown mode reduces the quiescent supply current to below 4mA and places the output into a high-impedance state, typically 75k (MAX4023/ MAX4025). Multiple devices may be paralleled to construct larger switch matrices by connecting the outputs of several devices together and disabling all but one of the paralleled amplifiers' outputs.
14
______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
A/B 75 CABLE IN_A RT 75 75 CABLE IN_B RT 75 FB_ RG OUT_ RF RT 75 75 CABLE RT 75 EN
MAX4023 MAX4025
Figure 1. MAX4023/MAX4025 Noninverting Gain Configuration
sitic inductance, keep PC traces short and use surfacemount components. If input termination resistors and output back-termination resistors are used, they should be surface-mount types, and should be placed as close to the IC pins as possible.
Video Line Driver The MAX4024/MAX4026 are well suited to drive short coaxial transmission lines when the cable is terminated at both ends (as shown in Figure 2a) where the fixed gain of +2 compensates for the loss in the resistors. The MAX4023/MAX4025 have settable gain to equalize long cables. The MAX4023/MAX4025 allow adding functions that normally require additional op amps. For example, a cable driver can "boost" the high frequencies for long runs, making the part perform multiple functions. Figure 2b shows the "cable booster" using the MAX4023/MAX4025. Driving Capacitive Loads A correctly terminated transmission line is purely resistive and presents no capacitive load to the amplifier.
Reactive loads decrease phase margin and may produce excessive ringing and oscillation (see Typical Operating Characteristics). Another concern when driving capacitive loads is the amplifier's output impedance, which appears inductive at high frequencies. This inductance forms an L-C resonant circuit with the capacitive load, which causes peaking in the frequency response and degrades the amplifier's phase margin. Although the MAX4023-MAX4026 are optimized for AC performance and are not designed to drive highly capacitive loads, they are capable of driving up to 33pF without oscillations. However, some peaking may occur in the frequency domain (Figure 3). To drive larger capacitive loads or to reduce ringing, add an isolation resistor between the amplifier's output and the load (Figure 4). The value of RISO depends on the circuit's gain and the capacitive load (Figure 5). Also note that the isolation resistor forms a divider that decreases the voltage delivered to the load.
______________________________________________________________________________________
15
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
A/B 75 CABLE IN_A RT 75 75 CABLE IN_B RT 75 REF OUT_ RT 75 75 CABLE RT 75 EN
MAX4024/ MAX4026
Figure 2a. Video Line Driver
VIDEO IN A
VCC 75 VIDEO OUT
VIDEO IN B VEE RF CB
RI
RB
CB AND RB ARE CHOSEN SUCH THAT: EFFECT OF BOOST
GAIN
FREQUENCY
Figure 2b. Cable Booster Using the MAX4023/MAX4025
16
______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
MAX4023/MAX4025 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY vs. CL
MAX4023/25 toc23
OPTIMAL ISOLATION RESISTOR vs. CAPACITIVE LOAD
MAX4023 RL = 150 40
MAX4023/25 toc24
5 4 3 2 GAIN (dB) 1 0 -1 -2 -3 -4 -5 1.0 10 100 CL = 5pF CL = 0pF CL = 15pF CL = 10pF
50 OPTIMAL ISOLATION RESISTOR ()
30
20
10
0 1000 0 50 100 150 200 250 FREQUENCY (MHz) CAPACITIVE LOAD (pF)
Figure 3. Small-Signal Bandwidth vs. Frequency with Capacitive Load and No Isolation Resistor
Figure 5. Optimal Isolation Resistance vs. Capacitive Load
Selector Guide
A/B 75 CABLE IN_A RT 75 75 CABLE IN_B RT 75 REF OUT_ RISO EN
PART MAX4023
CL RL
PIN-PACKAGE 16 SO/QSOP 14 SO/TSSOP 20 SO/TSSOP 20 SO/TSSOP
NO. OF VIDEO MUXAMPS 3 3 4 4
AMPLIFIER GAIN (V/V) +1 +2 +1 +2
MAX4024 MAX4025 MAX4026
MAX4024 MAX4026
Chip Information
TRANSISTOR COUNT: 655 PROCESS: Bipolar
Figure 4. Using an Isolation Resistor (RISO) for a HighCapacitive Load
______________________________________________________________________________________
17
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
Pin Configurations
TOP VIEW
IN1A 1 IN2A 2 IN3A 3 VEE 4 A/B 5 IN1B 6 IN2B 7 IN3B 8
16 FB1 15 OUT1 14 VCC IN1A 1 IN2A IN3A 2 3 14 OUT1 13 A/B 12 VCC
MAX4023
13 EN 12 FB2 11 OUT2 10 OUT3 9 FB3
VEE 4 IN1B 5 IN2B 6 IN3B 7
MAX4024
11 EN 10 OUT2 9 8 OUT3 REF
SO/QSOP
SO/TSSOP
IN1A 1 IN2A 2 IN3A 3 IN4A 4 VEE 5 A/B 6 IN1B 7 IN2B 8 IN3B 9 IN4B 10
20 FB1 19 OUT1 18 OUT2 17 FB2
IN1A 1 IN2A 2 IN3A 3 IN4A 4 VEE 5 VEE 6 IN1B 7 IN2B 8 IN3B 9 IN4B 10
20 REF 19 OUT1 18 OUT2 17 A/B
MAX4025
16 VCC 15 EN 14 FB3 13 OUT3 12 OUT4 11 FB4
MAX4026
16 VCC 15 VCC 14 EN 13 OUT3 12 OUT4 11 REF
SO/TSSOP
SO/TSSOP
18
______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE 14, 20 TSSOP 14, 16 SOIC 16 QSOP 20 SOIC PACKAGE CODE U14-2, U20-2 S14-1, S16-1 E16-1 W20-1 DOCUMENT NO. 21-0066 21-0041 21-0055 21-0042
MAX4023-MAX4026
______________________________________________________________________________________
TSSOP4.40mm.EPS
19
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
INCHES DIM A A1 B C e E H L MAX MIN 0.069 0.053 0.010 0.004 0.019 0.014 0.010 0.007 0.050 BSC 0.157 0.150 0.228 0.244 0.016 0.050
MILLIMETERS MAX MIN 1.35 1.75 0.10 0.25 0.35 0.49 0.19 0.25 1.27 BSC 3.80 4.00 5.80 6.20 0.40 1.27
N
E
H
VARIATIONS:
1
INCHES
MILLIMETERS MIN 4.80 8.55 9.80 MAX 5.00 8.75 10.00 N MS012 8 AA 14 AB 16 AC
TOP VIEW
DIM D D D
MIN 0.189 0.337 0.386
MAX 0.197 0.344 0.394
D A e B A1 C 0-8 L
FRONT VIEW
SIDE VIEW
PROPRIETARY INFORMATION TITLE:
PACKAGE OUTLINE, .150" SOIC
APPROVAL DOCUMENT CONTROL NO.
21-0041
REV.
B
1
1
20
______________________________________________________________________________________
SOICN .EPS
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
MAX4023-MAX4026
______________________________________________________________________________________
QSOP.EPS
21
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023-MAX4026
Package Information (continued)
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
SOICW.EPS
INCHES
N
MILLIMETERS MIN 2.35 0.10 0.35 0.23 MAX 2.65 0.30 0.49 0.32
E
H
DIM A A1 B C e E H L
MAX MIN 0.104 0.093 0.012 0.004 0.019 0.014 0.013 0.009 0.050 0.299 0.291 0.394 0.419 0.050 0.016
1.27 7.40 7.60 10.00 10.65 0.40 1.27
1
VARIATIONS: INCHES MILLIMETERS MIN 10.10 11.35 12.60 15.20 17.70 MAX 10.50 11.75 13.00 15.60 18.10 N MS013 16 AA 18 AB 20 AC 24 AD 28 AE
TOP VIEW
D
DIM D D D D D
MIN 0.398 0.447 0.496 0.598 0.697
MAX 0.413 0.463 0.512 0.614 0.713
A e B A1
C 0-8 L
FRONT VIEW
SIDE VIEW
PROPRIETARY INFORMATION TITLE:
PACKAGE OUTLINE, .300" SOIC
APPROVAL DOCUMENT CONTROL NO.
21-0042
REV.
B
1
1
22
______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
Revision History
REVISION NUMBER 0 1 REVISION DATE 1/03 11/09 Initial release Updated TOC16 DESCRIPTION PAGES CHANGED -- 9
MAX4023-MAX4026
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23
(c) 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.


▲Up To Search▲   

 
Price & Availability of MAX402309

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X